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This paper derives an equation for the potential-flow wave loading on a lattice-type 
offshore structure moving partially immersed in waves. It is for the limiting case of 
small lattice-member diameter, and deals entirely in member-centreline fluid 
properties, so that i t  can be applied computationally by a simple ‘stick model’ 
computer program. This field is currently served by a simple two-term semi- 
empirical formula ‘ Morison’s equation ’ : the new equation is effectively a replacement 
for the Morison inertial term, allowing the Morison drag term (or some refinement of 
i t)  to describe exclusively the effects of vorticity, which can in principle be calculated 
to greater accuracy when isolated in this way. 

The new equation calculates the potential-flow wave load accurate to second order 
in wave height, which is a great improvement on ‘Morison’s equation’: such results 
can currently only be sought by very much more complicated and computationally 
intensive methods, of currently uncertain repeatability. Moreover the third-order 
error is localized at the free-surface intersection, so the equation remains attractive 
for fully nonlinear problems involving intermittent immersion of lattice members, 
which are currently beyond even the most sophisticated of these computationally 
intensive methods. It is shown that the primary reason for this large contrast in 
computational efficiency is that the loads are derived from energy considerations 
rather than direct integration of surface pressures, which requires a lower level of 
flow detail for a given level of load-calculation accuracy. 

These improvements must of course be seen against the current levels of 
uncertainty over the calculation of vorticity-induced loads, which in many 
applications completely dwarf inaccuracies in potential-flow load calculation. The 
conditions are accordingly established under which the improvements are com- 
parable to the total wave load predicted by the Morison drag and inertia terms in 
combination. They are that the lattice member diameter is greater than its 
length/lO, or the relative fluid motion/5, or the structure’s motion radiusl20, or the 
wavelengthl30: if any one of these conditions is satisfied, the new equation is 
worthwhile even when used in combination with simple vorticity-induced load 
calculations from a Morison drag term. 

1. Introduction 
There are a t  present three basic approaches to calculating wave loads on lattice- 

type offshore structures (i.e. frameworks built of cylinders of arbitrary cross-section 
and orientation). The first is to assume that the flow around each section of the lattice 
is as it would be if that section were immersed in a uniform cross-flow with 
acceleration and velocity equalling those (normal to the member) in the undisturbed 
incident wave a t  that point. The wave load in such uniform cross-flow is known from 
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experiments in a U-tube oscillating water column apparatus, and can be expressed 
empirically by ‘Morison’s equation’ as an inertial term proportional to the 
acceleration, plus a drag term proportional to the velocity squared. Thus the wave 
load on any lattice structure can be predicted by ‘ Morison’s equation ’, with very 
little computational effort. 

The second approach is not restricted to lattice structures but can be applied to 
them. It is to  assume that the flow is irrotational (i.e. ignore the boundary layers and 
all the wakes produced by flow separation) and describe the flow as a power series in 
wave height by Stokes’ expansion, so as to give first-order wave loads proportional 
to wave height, second-order wave loads proportional to (wave height)*, and so on. 
For calculating the first-order loads, much the most widely used computational 
procedure is to distribute over the structure’s surface a large number of wave- 
radiating hydrodynamic point sources and/or dipoles. The mathematical expressions 
for the flow from an individual source and dipole is given in Wehausen & Laitone 
(1960) following the expressions of Lamb (1932, $$242-245) which were first studied 
in detail for this application by John (1950). Their complexity, and the inherent 
abstraction of the procedure for the simultaneous adjustment of all the source/dipole 
strengths to solve any particular problem, means that computer programs using this 
method are prone to a variety of modest systematic errors, and also need large 
computing resources. This is particularly true when they are applied to lattices; 
Eatock-Taylor & Jefferys (1986) report answers (for non-trivial parameters like 
added mass) typically scattered over a range 1.5: 1 from a number of nominally 
identical programs from different authors, and Korsmeyer et al. (1988) give results 
and computing times with a very highly optimized program. These latter show that 
for first-order calculations each lattice member needs a t  least fifty panels (i.e. sources 
and dipoles), and that a modest ten-member lattice (or thirty members taking 
computational advantage of two planes of symmetry) will require 10 h computing 
per wave case on a typical medium-sized (0.5 Mflop) computer. For more complex 
lattices, the computing time rises as the square of the number of panels (itself an 
advance ; with earlier programs it rises eventually as the cube). 

The third approach is again not limited to lattice structures, and again assumes 
irrotational flow. It is to simulate the fully nonlinear motion of the water surface by 
means of primitive hydrodynamic sources, dipoles or vortices distributed over this 
moving free surface as well as over the instantaneous wetted surface of the structure. 
This type of procedure was originally developed for studying breaking waves 
(Longuet-Higgins & Cokelet 1976) ; i t  is completely general and can in principle 
handle highly nonlinear effects such as the intermittent immersion of a lattice 
member, which is inherently beyond Stokes’ expansion. However, the approach 
poses deep problems of numerical stability and requires much larger computing 
resources than the second approach above -at the present time i t  has only been 
applied to single fixed horizontal cylinders parallel to the wave crests (Vinje & Brevig 
1981) and to single circular vertical cylinders (Isaacson 1982). 

This paper is concerned with improvements to  the first (‘ Morison’s equation ’) 
approach. It was argued by Lighthill (1979, 1986b) that the hydrodynamic loading 
on a lattice-type offshore structure, where the member diameters are small compared 
with the wavelength, should be analysed as the sum of the loading due to the 
potential flow alone, and the loading due to  the remaining vorticity-induced flow 
alone. He pointed out that although in uniform cross-flow (i.e. the conditions in a U- 
tube apparatus) the Morison inertia term did indeed precisely correspond to  the 
potential-flow load, it did not do so in the non-uniform flow conditions of waves. In 
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particular, he showed (Lighthill 1979) that the velocity gradients resulting from flow 
non-uniformities produce a contribution to  the potential-flow load on a fixed vertical 
circular cylinder which does not fall (as a proportion of that load) as the cylinder 
diameter is reduced. At first sight this might appear to be explained by the 
contribution made by velocity gradients to water particle acceleration (e.g. in the 
steady but accelerating flow in a narrowing pipe). I n  particular, i t  was shown by 
Isaacson (1979, equation 28) that for a fixed horizontal circular cylinder (parallel to 
the wave crests) the Morison inertia term correctly describes the potential-flow loads, 
if it  is based on full particle accelerations. Unfortunately this explanation is not a 
general one : Lighthill’s vertical-cylinder result cannot be reproduced by that means. 

In  terms of Stokes’ expansion, these potential-flow loads from velocity gradients 
are of second order in wave height, like the Morison drag term (the Morison inertia 
term being first order in wave height). Rather than use that term to describe them 
empirically, Lighthill’s proposal is that the Morison inertia term be replaced by the 
potential-flow load calculated accurately to second order in wave height. In  this way 
the Morison drag term is left exclusively for describing the vorticity-induced load, 
and may in its turn one day be refined, since vorticity-induced load can in principle 
be accurately calculated using a modified version of the well-known formula for the 
momentum of a vortex flow (see e.g. Batchelor 1967, equation 7.2.5). Lighthill has 
in mind second-order potential-flow calculations carried out, as for his vertical 
cylinder, by finding the limiting form of the Stokes’ expansion results as the cylinder 
diameter is reduced. Thus his proposed replacement for Morison’s inertia term is 
unified with the second approach described above, by giving amwers in agreement 
with i t  if the lattice member diameters are sufficiently small. 

The problem addressed by this paper is that of obtaining an explicit general 
equation for these limiting forms, so that the result can be applied computationally 
in the same way as Morison’s equation, using a ‘stick model’ of the lattice structure 
rather than the very much more complicated ‘panel model ’ required by the second 
approach above. In  fact the equation derived requires about 0.1 s per timestep per 
lattice member on a 0.5 Mflop computer, so that it is practicable to analyse the most 
complex structures with thousands of cylindrical elements, which from the above 
figures are commercially impractical, even to first order in wave height, even with the 
fastest panel programs. Being a simple explicit equation, i t  is also not prone to  the 
various systematic errors of panel programs referred to above, which in most cases 
more than compensates for its additional approximation that the lattice member 
diameters are small. 

The argument used to  derive the new equation begins with a review in $2 below 
of the general features of the potential flow around a cylinder in the most general 
moving finite-length partially immersed case, as its diameter is reduced relative to 
the wavelength (and any other lengths defining the problem), following the 
procedure in Lighthill (1979). It is explained that the source of Lighthill’s second- 
order vertical-cylinder load is not only the direct effects of the velocity gradient, but 
also the small component of the diffracted flow parallel to the cylinder axis, which 
is why his result is different from Isaacson’s (1979) one (Isaacson’s horizontal 
cylinder is a two-dimensional problem with zero axial flow). Moreover, it is shown 
that the local flow a t  a cylinder end, or at a free-surface intersection (except in 
Lighthill’s vertical-cylinder example, which is atypically simple), also produces a 
second-order wave load, which is precisely comparable in that it too does not fall (as 
a proportion of the total potential-flow load) as the cylinder diameter is reduced. 

At first sight, therefore, the general problem of second-order potential-flow loads 
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on lattices appears prohibitively complicated. It is next shown in $3, however, that 
in two simple classical examples - a cylinder translating in still water and a small 
body fixed in converging flow - all this complexity is avoided by using (respectively) 
a momentum and an energy argument to  deduce the fluid load. This suggests that in 
general lessJlow details are required to calculateJluid loads by either of these means, than 
by direct integration of surface pressures. It motivates the energy argument of the 
remainder of the paper, and explains why the final result is so simple, using as it does 
only a simple ‘stick model’ to characterize the flow, and omitting all the flow details 
just cited above as the apparent ‘cause’ of second-order wave loads. It also means 
that the contrast between such a ‘stick model’ and the kind of beautiful detailed 
lattice-structure ‘panel model’ shown by Korsmeyer et al. (1988) is not as stark as 
it may seem: the latter has of necessity to  be more detailed, because i t  is used for 
surfacc pressure integration, which is evidently a much less efficient method of 
determining wave loads. 

The crucial approximation of this paper, which enables a classical energy 
argument to be used, is that the position of the wave surface is  unaffected by the presence 
of the structure. This removes the free-surface degrees of freedom from the problem, 
so that it can be tackled by classical energy arguments (i.e. Kelvin &, Tait’s argument 
rigorously proved by Lamb (1932, $136); this paper has no relation to recent 
attempts (e.g. Miloh 1984) at  using energy arguments when the free-surface freedoms 
are retained). This approach is much less restrictive than the traditional 
Froude-Krilov approximation, which is that not only the surface position of the 
waves, but also the pressure in them, are unaffected by the presence of the structure. 
Indeed, it is shown in 94 that  for our limiting case of small-diameter cylinders, the 
effccts of our ‘wavy lid ’ approximation are localized a t  the intersections of lattice 
members with the free surface-elsewhere the effect is nil. In  terms of Stokes’ 
expansion, i t  is in fact shown that the error introduced by the approximation is of 
third order in wave height, which meets the original specification for second-order 
accuracy laid down as described above by Lighthill (1979). Equally important, 
however, is the fact that  the error is localized -this means that the approximation 
remains attractive for the many practical problems of very large nonlinear structural 
and fluid motions, where the Stokes’ expansion procedure of a perturbation analysis 
about the mean position of the free surface (and, for a moving structure, the mean 
structural position) is clearly inappropriate. An interesting example is the case of a 
breaking wave, in which i t  has been shown by Peregrine, Cokelet k McIver (1980; 
further details in New, McIver & Peregrine 1985) that the velocity gradients produce 
accelerations up to 59 behind the vertical wave face, very forcibly focusing attention 
on the effects of velocity gradients described above. Peregrine’s work is presently the 
fullest development of the third analytical approach described above ; the results of 
this paper are therefore of interest through their link with that approach as well as 
through their link with Stokes’ expansion methods. 

The energy argument itself is completed in 995 and 6, with the algebra kept 
manageable by means of a special notation summarized for convenience in Appendix 
A. It is first shown, in $5, that the fluid kinetic energy around an arbitrary lattice can 
be described by a simple stick model formula, the contributions from the various flow 
details cited above vanishing in our thin-cylinder limit, despite the fact that their 
contributions to the integral of surface pressure do not vanish, as stressed above. It 
is then shown in $6 that the Lagrange coordinates of the classical energy argument 
can be eliminated because of the quadratic form of the energy expression, so as to 
give an equation of motion in the simple vector form required for general application. 
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(The quadratic form is incidentally not dependent on the thin-cylinder limiting 
process, so the equation of motion is generally applicable to arbitrarily shaped bodies 
for which the fluid kinetic energy can be obt,ained by other means. An offshore- 
structure example is large seabed template structures during their installation by 
crane from the surface, in which they interact hydrodynamically with the seabed. 
The fluid kinetic energy can here be estimated, or if necessary computed with a 
standard finite-element computer program, for various seabed separation distances 
and attitudes, and the equation can then be used to find the motions of the template 
structure.) 

The paper concludes with a study in $ 7  of the circumstances under which the new 
equation is a worthwhile improvement over Morison’s equation’ a t  present, i.e. even 
when combined with simple calculations of vorticity-induced load using the Morison 
drag term. To do this, the improvement is isolated by subtracting the load predicted 
by the Morison inertia term from the potential-flow loads predicted by the new 
equation, and the result is compared with the total load predicted by Morison’s 
equation. The improvements are categorized according to the surface-pressure 
‘causes’ elucidated in $2, viz: (a) steady-flow end effects, (b) unsteady-flow end 
effects, ( c )  longitudinal diffracted/radiated flow effects, (d ) direct effects of incident 
velocity gradients; and in each case the criterion for a worthwhile improvement is 
derived in terms of the relevant non-dimensional parameter, which turns out to be 
the ratio of the cylinder diameter to (respectively) the cylinder length, the wave 
height, the radius of curvature of the structure’s motion, and the wavelength. 
Section 7 also affords the opportunity of comparing the results of the new equation 
with the other relevant published results, all of which are special cases derived by 
other means. In all cases the new equation agrees as i t  should, after rectifying any 
errors in the other arguments used. 

2. General features of the potential flow around a thin cylinder in waves 
In  this first Section the aim is to establish the general features of the potential flow 

around a thin finite-length cylinder of arbitrary cross-section moving in waves, for 
the general case of the cylinder a t  an arbitrary angle to the vertical, with one end out 
of the water and one in. By ‘thin’ we mean the limiting case of a cylinder whose 
radius b is reduced while the wavenumber k ( = 27c/wavelength) and the cylinder 
length (and water depth) are held constant, just as in Stokes’ expansion we consider 
the limiting case of waves whose amplitude a is reduced in the same circumstances. 
In Stokes’ expansion dimensioned quantities (i.e. pressures, velocities, etc.) are 
described as being of nth order in ka, meaning that if they are expressed as a function 
f ( k a ) ,  then f ( k a ) / ( k c ~ ) ~  tends to  a finite non-zero limit (with the original dimensions, 
i.e. pressure, velocity, etc.) as ka tends to  zero. In exactly the same way, we shall 
describe dimensioned quantities as being of nth order in kb, with the precisely 
analogous meaning that if they are expressed as a function f (kb) then f (kb)/(kb)n 
tends to a finite non-zero limit as kb tends to zero. Where necessary, we shall talk of 
ka-order and kb-order, rather than plain order, to avoid ambiguity. As a final 
refinement, we do not wish to exclude the case of a deeply immersed cylinder moving 
in the absence of incident waves, owing to some external excitation, in which 
situation the wavelength may be essentially irrelevant, and the radius to the 
instantaneous centre of rotation may have been introduced as another length in the 
problem. We shall therefore write k’b for kb, and k‘a‘ for ka,  to indicate that the 
limiting process makes (respectively) the cylinder radius, and all fluid motions 
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around the cylinder, small compared with all other lengths in the problem 
(wavelength, cylinder length, water depth, and radius to the instantaneous centre of 
rotation). 

When a cylinder cuts the free water surface there is in fact a problem in considering 
the small-k’b limit in isolation, because if a is held constant the pressure variations 
around the cylinder do not reduce to zero as b is reduced (the ‘dynamic head’ 
pressure gain a t  a stagnation point being independent of b), implying an ever-steeper 
slope of the free surface, so that the potential flow will become ever more badly 
behaved. Rather, therefore, we must for each b first consider the well-behaved 
limiting case of small a, in other words apply the two limiting procedures in the 
order : 

Lim Lim ( )  , (2.1) 
k’b+O { I  k’a‘+O 

thereby effectively restricting our attention to the question of the kb-order of 
quantities of given k‘d-order. The aim of this Section is accordingly limited to 
establishing the k’b-order of the various constituents of the first-k‘d-order flow 
around a thin cylinder, together with certain features of the second-ka’-order wave 
loads, in the general case defined above. 

It is convenient to begin by considering the special case of the first-Pa’-order flow 
from deep-water waves around a cylinder which is (i) fixed, (ii) vertical, (iii) circular 
and (iv) infinite in length. This classical problem was solved for all cylinder diameters 
by Havelock (1940, equation 17), and is a standard starting point in the offshore- 
structure literature, having been extended there to water of finite depth (MacCamy 
& Fuchs 1954) and more recently many attempts having been made to extend it to 
second Fa’-order. Our interest is restricted to the limiting case of small cylinder 
diameter, and moreover to the flow in the region close to the cylinder; for these 
purposes the Havelock expressions reduce to  a simple form which can be derived 
directly, and much more simply, by an argument due to Lighthill (1979). The 
argument is based on the expansion of the fluid velocity vt in the undisturbed 
incident wave as a Taylor series (see e.g. Batchelor 1967, equation 2.9.18) based its 
value ( v ~ ) ~  and gradients at a fixed point, and position q relative to that point: 

avi a Z v i  

Qxj kax iaxk  212 = (Vi),+X -+%.x - +... . 

Applying this to  the special case of a plane perpendicular to  the cylinder (rather than 
three-dimensional space), over which the incident-wave velocity only varies with 
position downwave from the cylinder, gives (Lighthill 1979, equations 3 6 4 0 )  the 
first ka-order velocity potential of the incident wave $I in the form: 

$I = (~ , )o+vr~ose+~ssr~( i+COS2e)+  ..., (2.3) 
where r and 0 are polar coordinates about the cylinder axis (0 = 0 being the 
propagation direction of the incident wave). is the value of $I on the axis, v is 
the component of the potential gradient V# on the axis in the direction 8 = 0, and 
s is the gradient of v on the axis in that direction: all three are functions of vertical 
position. We see that wr cos 0 is the potential derived from the incident velocity ( v ~ ) ~  
in (2.2), and s ( r ~ o s @ ~  = &w2(1 +cos28) is the potential derived from the incident 
velocity gradient av,/ax, in (2.2). 

Lighthill then evaluated the first-k’a’-order diffracted potential $,, as a series of 
circular harmonics (see e.g. Batchelor 1967, equation 2.10.5) which give the 
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necessary zero normal flow on the (circular) cylinder surface in combination with the 
corresponding terms of (2.3). This gives an expression beginning with the cylinder's 
response to  the incident velocity, and then its response to the incident velocity 
gradient, and so on, thus: 

b2 
r 

q5D = v-cosB+ksb* 

The flow description is again three-dimensional because vertical variations are 
contained in v and s ;  at first sight that  is problematical because circular harmonics 
only satisfy Laplace's equation if such vertical variations are eliminated. However, 
(2.4) (and indeed (2.3)) is only intended to represent the flow near the cylinder (i.e. 
for small kr); in this region Lighthill points out (as earlier in Lighthill 1960) that the 
higher k'b-order of the velocity gradient in the longitudinal direction along the 
cylinder axis, compared with the transverse direction perpendicular to it, enables 
circular harmonics to be used for our limiting case of small k'b. For independent 
confirmation of the whole argument, (2.3) and (2.4) may be seen to  coincide with 
Havelock's expression (1940, equation 17)  when both kr and k'b are small. 

Lighthill's method extends easily to the case of a cylinder of arbitrary cross-section 
moving in response to finite-depth waves a t  an arbitrary angle to the vertical, 
because we can in all cases expand in a cylindrical Taylor series like (2.3), this time 
about the mean position of the cylinder axis. Likewise we can always choose 
combinations of circular harmonics like (2.4) to satisfy the cylinder boundary 
condition ; this time they represent the diffracted-plus-radiated potential. For our 
present purposes all we seek to establish is the k'b-order of the various constituents 
of the first ,"a'-order diffracted-plus-radiated velocity field near the cylinder, which 
are readily deduced from linear wave theory (according to which v and s are 
proportional to kq5 and kv, and their vertical gradients to kv and ks) and are shown 
in the first two columns of table 1 .  It is also simple to  enter in table 1 the flow 
properties around a submerged cylinder end. The flow here is qualitatively similar to 
the flow around a sphere : the velocity is of the same k'b-order as that in the incident 
wave, and since the distances involved are of order k'b, the associated velocity 
potential and velocity gradient will be of order k b  and (k'b)-' respectively, as shown. 

A greater problem arises at the free surface. The potential of (2.4) conveniently 
satisfies the well-known first-k'dorder free-surface boundary condition (Lighthill 
1979, equation 12) holding a t  the still-water position, viz: 

(2.5) 

(where t is time, z position measured vertically upwards, and g is the gravitational 
acceleration) because both v and s have the same type o f t  and z dependence as 
I n  general, however, this is not so; a simple example being the radiated potential 
caused by transverse motion of a vertical cylinder, which clearly has a quite different 
type of z dependence from Another example is a fixed cylinder inclined at an angle 
of 45' to the vertical ; here the large (zeroth-k'b-order) transverse diffracted velocities 
shown in table 1 column 1 will have components normal to the water surface, which 
means that the diffracted potential analogous to (2.4) cannot satisfy (2.5) because the 
second term in (2.5) will be of zeroth k'b-order, but the first term in (2.5) will be of 
first k'b-order (like q5D). 

We have therefore to allow for some special additional effect at the intersection of 
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Longitudinal velocity 
(i.e. velocity along 
cylinder axis) 

Transverse velocity 
(i.e. velocity at 90" 
to  cylinder axis) 

Velocity gradient in 
longitudinal direction 

Velocity gradient in 
transverse direction 

Velocity potential 

Around main length 
of cylinder 

Response to  
incident Response to  Around 
velocity: incident a 
result of velocity submerged 
motion gradient end 

k'b (k'b)2 

1 k'b 

kb 

(k'b)-' I (k'b)2 

1 
(k'b-' 

Around an intersection 
with the free surface 

Correction to  
give zero Further 

diffracted/ correction 
radiated to  satisfy 
velocity free surface 

normal t o  boundary 
free surface condition 

1 k'b 

( k ' b - 1  1 

J 
k'b (k'b)2 k'b k b  ( k'b)2 

TABLE 1. The k'b-order of various constituents of the first-k'a'-order diffracted and radiated flow 
around a thin cylinder in waves 

the cylinder with the free surface. The correct flow around a free-surface intersection 
can be realized from the above circular harmonics in two stages. First, we can add 
a three-dimensional potential flow which gives equal and opposite normal flow a t  the 
still-water position to that given by the circular harmonics. This flow will in general 
(for an oblique free-surface intersection) be of the same k'b-order as the transverse 
velocity in the circular harmonics, and since the distances involved (e.g. between the 
points of maximum and minimum potential) are again of order k'b, the flow is exactly 
analogous to that around a submerged cylinder end, as shown in table 1. Secondly, 
we can add a further three-dimensional potential flow so that the whole diffracted- 
plus-radiated potential satisfies the free-surface boundary condition ( 2 . 5 ) ,  in which 
the second term had just been set to zero (by means of the flow in table 1 column 4), 
and the first was (see table 1) of order k'b. The further potential needed therefore 
satisfies (2 .5 )  with minus this first term on the right-hand side, and since the 
distances invokved are once more of order k'b, this second three-dimensional flow is 
in all respects one k'b-order higher than the first one, as shown in table 1. 

Having completed our description of the general flow features around the cylinder, 
we now briefly examine the conventional next step (Lighthill 1979, equations 41-45) 
which is to  calculate the fluid loads from the well-known pressure formula (see e.g. 
Batchelor 1967, equation 6.2.5) 

where p is the fluid density. The first k'a'-order load can only come from the first 
term, since the second term involves the square of velocity and is thus of second k'a'- 
order. This paper addresses the limiting case of small k'b; our interest is therefore 
limited to the lowest-k'b-order terms in the wave load. We see in table 1 that, our first- 
k'a'-order wave load from the diffracted and radiated flow will accordingly come 
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entirely from the first column ; the other columns having velocity potentials which 
are either of a higher kb-order, or affect a surface area of a higher k‘b-order, or both. 
For our purposes the crucial point is the simple one that this first-k’a’-order wave 
load is of second order in k’b; because the velocity potential, as well as the surface 
areas involved, are of first k‘b-order. The same applies to the remaining first-k’d 
order wave load from the incident flow, by the elementary argument that fluid 
pressure gradients produce forces on immersed bodies proportional to their volume, 
and thus in our case to their radius squared. When we consider the second-k’d-order 
wave load, it turns out that this also is of second order in k’b; Lighthill (1979) 
therefore stresses the important conclusion that second-k’a‘-order wave loads cannot 
be ignored for the limiting case of small-diameter cylinders (i.e. small k’b). 

In  investigating this point further, it should be noted that like Lighthill our 
concern will be with the total wave load, whether of first or second k d o r d e r .  For 
example, Lighthill showed that the second-k‘a‘-order wave force on his fixed vertical 
cylinder in regular waves is a pure second harmonic of the wave frequency (Lighthill 
1979, equation 47), the second-k‘d-order steady force vanishing in comparison in the 
small-k’b limit. So in this case we shall not be concerned with the details of the 
limiting properties of the steady force, or in particular with the work of McIver 
(1987) and Eatock-Taylor & Hung (1985), who have shown that in the small-k’b limit 
the second-Pa’-order steady force on a group of fixed vertical cylinders is 
proportional to the square of the number of cylinders. For our purposes this is 
immaterial : it is sufficient that  the ratio of the steady force to the second harmonic 
tends to zero with k’b, so that in this limit it makes zero contribution to the total 
second- k’d-order wave load. 

An important source of second-kd-order loads is the second term in (2.6) 
evaluated for the first-k‘d-order potential (Lighthill 1979, equation 33). This term is 
well-known to produce zero translational load in a uniform incident flow 
(D’Alembert’s paradox, see e.g. Batchelor 1967). Lighthill showed that accordingly 
the effects of the lowest-k’b-order parts of the transverse velocity featured in column 
1 of table 1 cancel out on their own, and it is necessary to consider the higher-k’b- 
order parts of the transverse velocity in column 2 resulting from the velocity 
gradient, and, interestingly, the k’b-order longitudinal velocity in column 1. The 
result is nevertheless a force of second k‘b-order, and therefore significant for even the 
thinnest cylinders, as just highlighted, because the first-k’a‘-order load is of second- 
k‘b-order too, Applying this approach to more general examples than Lighthill’s 
infinite vertical cylinder involve the special three-dimensional end flows in table 1 
columns 3-5, since although the areas involved are clearly one k’b-order smaller than 
the main cylinder surface area, we see from table 1 that the fluid velocities are one 
kb-order larger (given that the direct effects of the lowest-kb-order parts of the 
transverse velocity in column 1 cancel, as we have just noted). Thus these end flows 
also produce second-k’b-order fluid loads, exactly comparable with Lighthill’s loads 
from longitudinal flow and velocity gradients. 

3. Two suggestive classical results 
At first sight, therefore, the accurate calculation of potential-flow wave loading on 

thin cylinders is a matter of laborious consideration of the details of pressure 
distribution resulting from end effects, longitudinal diffracted flow, and incident- 
wave velocity gradients. So laborious, in fact, that there appears to be little realistic 
prospect of completing the task for the general case withouf error - recent attempts 
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have evidently (Angwin 1986) all required arbitrary approximations. There are, 
however, signs in the classical literature that the problem has a simpler structure : 
strikingly, Lamb (1932, $117) begins his chapter on the subject by remarking of 
Kelvin, Tait & Kirehhoff that  ‘The cardinal feature of the methods followed by these 
writers consists in this, that the solids and the fluid are treated as forming together 
one dynamical system, and thus the troublesome calculation of the effect of the fluid 
pressures on the surfaces of the solids is avoided. ’ 

Two of the classical results given by Lamb after that remark are particularly 
suggestive when applied to our problem of thin cylinders. The first is the formula 
given by Kirchhoff (Lamb 1932, $124 equation 6) for the turning moment felt by a 
body in steady translation through still water (known in the later aeronautical 
literature as the ‘Munk moment ’), which in modern notation (Milne-Thomson 1968, 
$18.50 following Lamb exactly, or more accessibly Lighthill 1986a, equation 338) is 
m A v where v is the velocity and m the ‘momentum’ (i.e. added-mass matrix times 
velocity). This is clearly non-zero for a thin cylinder moving obliquely, i.e. 
translating in a straight line neither along, nor perpendicular to, its axis. But we see 
from table 1 that in this oblique case there is in fact no resultant fluid load along the 
length of the cylinder, because the longitudinal fluid velocity, as well as the 
transverse fluid velocity, are suitably symmetric around it. It therefore follows that 
the surface pressures causing the Munk moment must occur entirely a t  the ends of 
the cylinder, where there will be stagnation points and thus pressures high enough 
to offset the small end areas involved, as described in general formal terms at the end 

At first sight, therefore, it appears that  calculation of the Munk moment is not 
possible without careful consideration of the three-dimensional flow features a t  each 
end of the cylinder, in sufficient detail to determine the transverse fluid load at each 
end caused by the off-centre bias of the stagnation points in oblique flow. 
Remarkably, however, the Kirchhoff moment formula m A v is completely 
insensitive to these details - all that it requires is the transverse and longitudinal 
added masses, so as to give m. And in the thin-cylinder limit the former is just the 
length times the two-dimensional added mass per unit length, and the latter tends 
to zero by comparison. This is because the end effects on the transverse added mass, 
and the entire longitudinal added mass, are proportional to  the cube of the cylinder 
diameter, whereas the transverse added mass is proportional to  the cylinder volume. 
See incidentally Lighthill’s (1986a, $8.4) detailed treatment of Rankine ovoid 
leading to the same conclusion ; for our purposes it is sufficient to observe that the 
details of the three-dimensional flow a t  the cylinder ends are immaterial, since their 
contribution to m vanishes in the thin-cylinder limit. 

The key to this apparent paradox clearly lies in Kirchhoff‘s deduction of fluid loads 
by a moment argument (Lamb 1932, $119) rather than by integrating surface 
pressures. Prom the momentum viewpoint the Munk moment is unconnected with 
end effects but is loosely speaking (see e.g. Lighthill 1986a, $8.4 for precise details) 
the result of the steadily arising angular momentum of the fluid about a distant-fluid- 
fixed axis, from which the line of action of m grows steadily more distant, because 
m is not parallel to v .  It appears, therefore, that  fewer j h w  detaib are required to 
calculate fluid loads on thin cylinders by a momentum argument, than by integration of 
surface pressures, if this first simple example is anything to go by. 

A related message comes from another simple example given by Lamb (1932, 
$143). This is Taylor’s use of an energy argument to determine the fluid loads on a 
small body fixed in a non-uniform stream. Taylor (19286) showed that a calculation 

of $2. 



A new equation for wave loads on offshore structures 305 

of the fluid kinetic energy assuming the stream to be uniform (Taylor 1928b, 
equation 5) was sufficient to deduce the fluid forces (although not the moments) 
arising from the stream’s non-uniformity - the stream’s velocity gradients reappear- 
ing correctly in his force expression via his energy position derivative. Taylor 
also calculated the fluid loads conventionally by surface pressure integration. Since 
the pressures around a body fixed in a uniform stream exert zero net force 
(D’Alembert’s paradox), he had of necessity to analyse the flow details associated 
with the stream’s non-uniformity (Taylor 1928b, equations 14, 18), using a method 
analogous to  Lighthill’s (2.3) and (2.4) above, but with simple spherical harmonics 
because the body was assumed small in all dimensions. For our purposes the 
important point is that although this level of detail was essential for the pressure 
argument, it was unnecessary for the energy, just as details of end flow were 
unnecessary for the momentum argument above. It therefore appears that calculating 
@id loads by energy arguments also requires fewer flow details than calculations from 
surface pressures, if this second simple example is anything to go by. 

These two classical results suggest that the modern problem of wave loading on a 
lattice structure might be fruitfully approached by classical momentum or energy 
arguments rather than the normal modern method of surface pressure integration, 
which appears to be prohibitively complex. The result derived below in fact uses the 
energy approach; from the simple vector form of the result, it could presumably also 
be derived by a momentum argument. 

4. The approximation of an incident-wave-shaped ‘lid’ 
The central approximation of this paper, which enables the energy argument to be 

used, is that the position of the wave surface is unaflected by the presence of the structure. 
Similar thinking has been loosely applied with Morison’s equation for many years by 
the practice of applying i t  ‘up to the incident wave surface’ (implying that the height 
of the water surface around cylinder-surface intersections is in some average way 
equal to the incident wave height on the cylinder centreline) : in this paper we make 
a precise assumption in that spirit by constraining the free surface with a ‘wavy lid ’ 
to move exactly as it would if the structure were absent. In  terms of the power series 
scheme developed in 9 2, this conveniently corresponds to  omitting the free-surface- 
induced flow constituting the final column in table 1 .  This Section establishes the 
consequences of that  omission on the various constituents of the total wave load on 
a lattice structure built of thin cylinders. 

The key point about the omitted free-surface-induced flow (and indeed the flows 
of table 1 columns 3 and 4 too) has already been noted in 92; it is that  the flow is a 
truly three-dimensional ‘end effect’ in that it only extends along the cylinder for a 
distance of order k’b, and hence affects a cylinder area of order only (k‘b)*. Since the 
Auid loads considered in $2 were shown there to be of order (k’b)2 too, i t  follows that 
the contribution to this fluid load from the omitted flow vanishes in the thin-cylinder 
limit unless the pressures there are of zeroth order in k‘b. We have already seen in 92 
that  its contribution to the first-k‘a’-order fluid load (and indeed also the contribution 
to that load from the flows in columns 3 and 4 of table 1 )  vanishes in this way because 
the first-k’a’-order fluid pressures involved are higher than zeroth k’b-order. I n  this 
Section we extend that argument to see a t  what Fa’-order, if a t  all, the omitted free- 
surface-induced flow makes a contribution to  the total fluid load in our thin-cylinder 
limit. 
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The second-k'a'-order free-surface boundary condition is (see e.g. Lighthill 1979, 
equation 25) 

applied at the instantaneous free surface, where q is the amplitude of the total first- 
k'a'-order fluid velocity. A cylinder intersecting the surface produces zeroth-k'b-order 
changes to the right-hand side (from what it would be without the cylinder present), 
see table 1,  and so must produce a second-k'a'-order free-surface-induced flow (i.e. a 
second-Fa'-order flow omitted by our wavy-lid approximation) with velocities also 
of zeroth k'b-order. This will make it resemble in all its k'b-orders the flows in table 
1 columns 3 and 4 ;  in this way the first term on the left-hand side will be of first k'b- 
order and the second of zeroth k'b-order, giving the required overall zeroth k'b-order 
for the left-hand side. It is striking that the second-ka'-order free-surface-induced 
flow is in all respects an order lower in k'b than the first-k'a'-order free-surface- 
induced flow, see table 1 column 5. 

Nevertheless, because the second-k'a'-order load from this omitted second-k'a'- 
order flow comes via the first term in (2.6) (the second term being of higher k'a'- 
order), the pressures in question are of first k'b-order (like the velocity potential, see 
table 1 columns 3 and 4), and so fail to meet the requirement above for a zeroth-k'b- 
order pressure. Thus not only does our wavy-lid approximation not affect the first- 
k'a'-order fluid load in the thin-cylinder limit, it does not affect the second-k'a'-order 
&id load either. This important conclusion can be checked, if desired, by the 
mechanical route of examining in turn the list of second-k'd-order wave loading 
terms on a moving structure usually credited to Pinkster (1979) (although his 
original list is incomplete, see Standing, Dacunha & Matten 1981, confirmed e.g. by 
Mavrakos 1988). The first such term is the total load from the second-Fa'-order 
potential as a whole, which on the Pinkster view will be partly present anyway in the 
incident waves, and partly generated by second-k'a'-order errors in the cylinder- 
surface boundary condition. The above argument would then just be used to show 
that the perturbation to this load produced by the wavy lid vanishes for small E'b. The 
remainder of the second-k'a'-order load would be considered as the sum of various 
product terms of first-k'a'-order quantities (e.g. the effects of the second term in (2.6) 
evaluated for first-Pa'-order velocity, as described in $2), which can all be readily 
seen to be unaffected in the thin-cylinder limit, because the first-k'dorder flow which 
has been omitted has a suitably high k'b-order (see table 1 column 5) and/or acts over 
an area of order (k'b)*, as already noted. 

The general features of the second-&a'-order frce-surface-induced flow established 
above also reveal where the first effects of the wavy-lid approximation are felt, which 
is at third order in k'a'. This because at third Fa'-order the second pressure term in 
(2.6) must be evaluated using a velocity expression correct to second k'a'-order, and 
must therefore include a contribution from this frec-surface-induced flow, which 
would be omitted by our wavy-lid approximation. The squaring process in the 
pressure term will produce third-Fa'-order product terms between this free-surface- 
induced velocity and the first-k'a'-order velocity : because both of these are of zeroth 
k'b-order (see above and table i ) ,  their product will be of the zeroth kb-order required 
above. 

From a practical point of view the fact that  our wavy lid introduces no error to 
second Pa'-order is mainly of computational interest (although there are a restricted 
class of pure second-k'a'-order practical problems, see e.g. Rainey 1986 and Pinkster 
1979) because it means that computer programs using this approximation can be 
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debugged by comparison with second-k’a’-order parameters calculated by other 
means. However, the fact that  the error occurs a t  third (rather than, say, fourth) 
Fa‘-order is academic compared to the fact stressed above that the error is a localized 
pressure anomaly, at the intersection point of cylinders with the free surface. This is 
because most practical problems of nonlinear wave loading on lattice-type offshore 
structures involve some kind of gross nonlinearity, such as the intermittent 
immersion of a whole structural member, or the structure moving to some completely 
new mean attitude. In these circumstances the Stokes’ expansion procedure of power 
series expansion about a nominal mean position (of the water surface and/or the 
structure) breaks down, and with it the concept of the k’a’-order of errors. However, 
the wavy-lid approximation can still be used with confidence, in the knowledge that 
the only errors introduced are localized to the free-surface intersection - elsewhere no 
approximation is being made at all, except that  the cylinders are thin. Indeed, if 
these localized errors are of particular concern, then the second-k‘a’-order 
approximation to the fluid load from ‘end effects’ at the surface intersections can be 
calculated from the formula (7.4) below, and any modifications to it considered. 

5. An expression for the fluid kinetic energy 
The wavy-lid approximation, together with the limiting flow properties listed in 

table 1, give a remarkably simple formula for the fluid kinetic energy. This was 
anticipated in $3, and the result is reminiscent of Taylor’s (1928a, b) simple energy 
formulae referred to there, although the contexts and arguments are quite different. 

The first critical point, as in Taylor (1928b), is to define precise ‘conditions at 
infinity ’, for otherwise a moving fluid extending to  infinity may easily possess infinite 
kinetic energy. Taylor’s (19283) device of a ‘fluid circulating in a cyclic space’, for 
which the energy formulae were derived by Kelvin, cannot be used here if only 
because the immersed volume of our lattice structures is not constant. Instead, we 
can envisage the structure acted on by a ‘local storm’, in an ocean of infinite depth, 
as shown in figure 1 (which also defines the volumes V,D,  the surfaces S, S’, the line- 
network L ,  the point R,  the angle a, and the vectors r ,  n, I ,  n’, t ) .  Even the varying 
immersion of the structure is then no problem, because from a far enough distance 
the storm and structure will appear as a t  most a three-dimensional monopole source, 
and thus impart finite kinetic energy to the fluid. (Of course, since our final loading 
equation in $6 depends only on local flow properties it is not limited to water of 
infinite depth-just as Taylor’s result is, as he argues (Taylor 19283, ‘Previous 
Work’), not limited to flow in a cyclic space. We are considering the limiting case of 
small cylinder diameter with the water depth held fixed, which is closely analogous 
tto Taylor’s limiting case of small body dimensions with the width of the cyclic 
channel held fixed.) Writing #D+R for the diffracted-plus-radiated velocity potential, 
we can thus write the total fluid kinetic energy e as 

e = ip J ~ ( $ 1  + #D+R) . vc$I  + #D+R) (5.1) 
V 

There is no restriction to  any Fa’-order or k‘b-order in this expression: #I is now 
unconditionally the potential of the incident waves, and q5D+R just satisfies the wavy- 
lid approximation. 
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V 
FIGURE 1. Definition sketch. The water surface shown is, crucially, in the same position it would 
occupy were the structure absent, and the waves are only a ‘local storm’, with the water surface 
becoming flat after some large but finite distance. S’ is the portion of the undisturbed wave surface 
within the structure; taken together with the wetted surface S of the structure, it  encloses a volume 
D and has a surface normal n (pointing out of D). The member centrelines L within D are continued 
by the unit vectors 1 at their ends. On S’, t is the normal to I ,  and n’ the normal to n,  all four being 
in the same plane with t - n  > 0, t-n’ > 0. Finally R is a reference point fixed within the structure, 
r is position relative to it, and V is the volume of water outside D ,  stretching to infinity. 

We now require a small technical lemma, which is that either of our potentials $ 
satisfy 

S, V+ . v + D + R  = S, V+ * ( 0  - u )  - +(n- u )  * n, s,. (5.3) 

where u = Vq51 is the incident velocity and u = v + o  A r is the local structural 
velocity (o being the angular velocity of the structure, and v its velocity a t  R) .  The 
definition of the potential 4 inside the structure is no problem if + is $I ; if it is +D+R 

then we must define it by making it (but not its derivatives) continuous over S ,  and 
giving it zero normal derivative over S’, as it has over the lid. These mixed boundary 
conditions over the surface of D are sufficient to define q5D+R uniquely within D,  see 
e.g. Batchelor (1967, p. 103). The proof of our small lemma is elementary, because the 
left-hand side can be transformed with Green’s theorem to 

the surface S being sufficient because V$D+R - n is by definition zero on the wavy lid, 
and the similar contribution from a far hemisphere centred on the local storm is zero 
because + and V+,+, in combination decay sufficiently rapidly with distance. This 
in turn can be transformed with Gauss’ theorem to 

(5 .5)  

in which the second term vanishes because V - u  and V - u  are both zero. (In this paper 
the use of the symbol V follows Batchelor 1967, p. xviii.) 

Applying this result to the second term in (5.2), and expressing the first term as 
the kinetic energy in the undisturbed incident wave, e, ,  minus an integral over D,  
gives 
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The remarkable property of this expression is its simplicity in the limit of small k b ,  
even for the general case of a lattice structure with complex joints. For we see at once 
that the first integral must become in this limit 

-&I lL cv.  u, (5-7) 

where c is the local cylinder cross-sectional area, because the gradents of v will from 
(2.2) clearly produce a contribution of higher order in k‘b’, and there are clearly no 
complexities at ends or joints. Also the last integral will become in this limit 

- p  c $bl( u - u )  nc/cos a, 
P 

where, see figure 1, a is the local angle (to the perpendicular) at which L meets S’, and 
C p  indicates the summation over all intersection points of the structure with the 
water surface. This is because gradients of $bI similarly produce contributions of 
higher order in k’b, as does q$D+R (see table 1 ) .  We note incidentally that the cosa 
term in (5.8) prohibits the consideration of exactly tangential surface intersections 
(a = 90”) ; it can be argued that the probability of this event is zero, and comparisons 
are precluded with the classical idealized problem of the partially immersed 
horizontal cylinder. Finally, in the limit of small k‘b the second integral will become 

where m is the local two-dimensional added-mass-per-unit-length mapping of 
structural members, considered as a three-dimensional mapping (i.e. the mapping 
which sets longitudinal components to zero, and multiplies transverse components 
along the principal added-mass axes by the appropriate added masses). This is 
because V$bDfR is dominated a t  small k‘b by the cylinder’s reaction to the incident 
velocity and the effects of its motion, the contribution from the incident velocity 
gradients and higher velocity position derivatives vanishing by comparison as k’b 
tends to  zero (see (2.4)) ; the case of a circular cylinder is particularly simple because 
in the small-k’b limit Vq$,,, inside the cylinder is simply the transverse component 
of (u-u). 

On a broader view, perhaps, there is nothing surprising about these simple limiting 
forms, which are merely a matter of the obvious dominant terms dominating. 
Rather, it  was by contrast a surprisingly complex matter to find in 92 the limiting 
form of the surface integral of the second pressure term in (2.6), because the obvious 
dominant terms cancelled out (D’Alembert’s paradox), leaving a complex variety of 
‘runners up’ requiring a particularly detailed study of the flow, as highlighted in $3.  
In any event, it is now convenient to gather the incident, radiated, and product 
terms in our limiting fluid energy expression, thus 

+ p ~ q 5 1 u - n c / c o s a  +- u-mu.  (5.10) 

By writing u as v+w h r,  then collecting terms with suitable arrangement of the 
scalar triple products, we can write this in the form 

e = e ,+I-U+$U-MU,  (5.1 1) 

P 1 ;I, 
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where Uis the six-dimensional vector ( v ,  0 ) .  Here obviously the ‘ fixed-structure fluid 
kinetic energy ’ eF is given by 

(5.12) 

where we are economizing by writing m‘ = m+pe. The six-dimensional vector I is 

where we are economizing by writing r A as the three-dimensional linear mapping r. 
The ‘ added mass ’ six-dimensional linear mapping is given by 

(5.14) 

Since m is symmetric and r is skew-symmetric, M is of course symmetric overall. It 
also obviously ignores the longitudinal added masses of the cylinders, because in the 
small-k’b limit they are vanishingly small relative to their transverse added masses, 
as described in $3. 

6. The equation of motion 
From the fluid kinetic energy, Taylor (1928b, equations 2, 3) deduced the fluid 

loading on a small body fixed in steady flow by the simple observation that the 
change in this kinetic energy after a notional displacement of the structure must 
equal the work done against the fluid loading during the notional displacement. 
Strikingly, if that argument is applied to our kinetic energy expression (which for a 
fully immersed fixed structure reduces to just the first two terms in (5.12)), then i t  
gives minus the loading deduced by Taylor (cf. Taylor 1928b, equation 2). This shows 
the importance of the ‘ conditions a t  infinity ’ - Taylor’s argument relies on the fixed 
walls of Kelvin’s cyclic space doing no work ; with our moving wavy lid the argument 
collapses. This is because it is well known that the reaction a t  the fluid walls to  an 
accelerating immersed body does not fall to zero as the walls are made more distant 
(the basis of the famous lack of convergence of the fluid momentum integral, Lamb, 
1932 $119); in our case this may be simply seen from the fact that useful work can 
be extracted by moving our structure cyclically with a suitable phase relative to  the 
waves ~ there must therefore be a corresponding work input on the wavy lid. 

However, there are no problems with Kelvin’s more general Lagrange-equation 
argument alluded to  by Taylor (1928b) and proved independently by Lamb (1932, 
$3 135, 136). We simply take advantage of the fact that  our wavy lid has suppressed 
all the degrees of freedom of the problem except six generalized rigid-body position 
coordinates qi of the structure, and write down Lagrange’s equations using our 
kinetic energy expression (5.11) : 

To (5.11) we have added the structural kinetic energy by replacing the added mass 
M by the total mass M*, and can omit eF from the first term above since clearly 
i3eF/aqi = 0. Lastly, the generalized force and moment from all non-hydrodynamic 
sources is written fi. Incidentally, another consequence of the suppression of the fluid 
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surface degrees of freedom is that henceforth we are dealing with fully nonlinear 
ordinary differential equations of motion, and so have access to the formidable new 
results and methods of dynamic systems theory (see Thompson & Stewart 1986). 
This contrasts with numerical methods in which the surface freedoms are retained 
(the third approach of $ I ) ,  for which there is no comparable insight available into 
their likely behaviour in any particular case. 

The usefulness of (6.1) can be greatly enhanced because the simplicity of the 
energy expression allows the generalized coordinates to be systematically eliminated. 
This is done in Appendix B, and results in 

d a 
dt ax - ( I+N)+{O,  ( k + h )  A w }  = - ( e ,+I .U+iU.M*U)+Q,  

where we are writing M*U as N = (m, h)  (this quantity would classically be known 
as the ‘impulse’ of the structure (Lamb 1932, $119), the hydrodynamic part being, 
via (5.4), the integral of the radiated potential over the structure’s wetted surface) 
and similarly writing I =  ( j ,  k) (this quantity can analogously be called the ‘wave 
impulse ’, being a similar integral of the incident plus diffracted potentials, i.e. the 
impulsive pressures on the structure due to the waves). Lastly, we are writing Q for 
the non-hydrodynamic force (acting at R) and moment on the structure. In  
particular, Q includes the effect of gravity, which has hitherto been ignored because 
with our wavy lid we have a perfectly well-defined problem without it. Gravity will 
simply produce an additional force (the structure’s weight) acting at its centre of 
gravity, and an additional hydrostatic pressure in the fluid, equal to  pg times the 
vertical distance below the position of the undisturbed water surface. The resulting 
hydrostatic force (acting a t  R) and moment on the structure is its integral over the 
wetted surface of the structure, which can be transformed with Gauss’ theorem (cf. 
(5.5),  this time the gradient of the pressure is pg, where g is the vector acceleration 
due to gravity, acting downwards) to a volume integral whose limiting form for thin 
cylinders (cf. (5.7), (5.8)) is 

where 7 is the water surface elevation above its undisturbed position. (In practice 
some care is needed in the definition of the mean surface elevation, to ensure that the 
surface pressure on the undisturbed wave is zero as it  should be. If the pressure at 
great depth is assumed to  be unaffected by the waves, then the water surface must 
have a second-Fa‘-order mean ‘set down’ t o  achieve this. Alternatively, if the mean 
surface position is taken as fixed, as it would be in a model basin, then the pressure 
a t  great depth must be increased.) The second term is noteworthy : it only vanishes 
if the structure is fully immersed or the water is still, so that (6.3) is only equal to 
the Archimidean definition of -pg times immersed volume (i.e. the first term in (6.3)) 
in those special cases. 

I n  order to bring out the relationship of (6.2) to the classical results for the simple 
case of a moving body fully immersed in an unbounded expanse of still water, it is 
helpful to change to a special definition of the operator a/aX. This is because in that 
situation the expression e,+ I .  U + ) U .  M*U (i.e. the total kinetic energy of fluid and 
structure) clearly does not vary with X, provided the velocity U maintains its 
amplitude and orientation relative to the structure. The operator a/aX by contrast 
assumes that U is held fixed in space during the incremental changes in X; if we 
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switch to an operator A/AX which assumes that U is held fixed relative to the structure 
during incremental changes of X, our derivative term will conveniently vanish for 
that simple still-water case. Classically (Lamb 1932, $120) this type of argument 
would be persued by writing Uin explicit components ui in a space-fixed axis system, 
and explicit components pi in a body-fixed axis system ~ if we write our six position 
coordinates as xi when ui are understood to  be the other variables, and as xi when pi 
are, then the required change is then simply from i3/axi to  a/axi. Maintaining our 
coordinate-free vector notation, however, we can write an incremental position 
change as SX = (ax,, ax,), so that when U is held fixed relative to the structure, our 
position increment will cause it to change by 

du = (dx, A V ,  ax, A W )  (6.4) 

The associated change in the arbitrary variable f (cf. (B 2)) is therefore 

Writing af/aU = (aflav, af/ao), and rearranging the scalar triple products, this gives: 

Thus in the new notation our equation of motion (6.2) becomes 

d Ae 
- ( I+N)+(O,v  A ( m + j ) } = c x + Q ,  dt 

where we are able to omit the structure’s own kinetic energy from the U- M*U term 
(since it is always a constant if U is held fixed relative to the structure), leaving 
simply AelAX. We shall write this henceforth in the form 

so that the terms on the right-hand side can later be identified as various types of 
wave load on the structure. 

Given the wavy-lid approximaton, (6.8) is equally true for an arbitrarily shaped 
body (see Rainey 1984), because the fluid kinetic energy will in general have a 
quadratic form like (5.11), although of course the terms in (5.11) will no longer be 
given by the simple thin-cylinder expressions (5.12)-(5.14), but by general surface 
integrals. In particular, if the body is moving in an unbounded expanse of still water, 
then Iis zero and Nis the classical ‘impulse’ of the body (Lamb 1932,s 119), and (6.8) 
becomes equivalent, as i t  should be, to the classical Kirchhoff general equations of 
motion (Lamb 1932, $124; or in modern notation Milne-Thomson 1968, $18.43). 
These equations are derived by a quite different argument, based on momentum (as 
highlighted in $3),  which is applicable only in an unbounded fluid : they are, however, 
just (6.8) with N written as a/aU(iU.M*U), and dldt expressed as a derivative in 
a body-fixed frame, plus (o A m,w A h) .  It can also be shown (Rainey 1984) that if 
the body is moving in an unbounded expanse of uniformly moving water, then (6.8) 
gives, as it should, exactly the same fluid loads as would be obtained by applying the 
Kirchhoff general equations in a frame moving with the far fluid. 

A final refinement is to find an explicit expression for AelAX in the thin cylinder 
(small k’b) limit - this is not strictly necessary, since Ae/AX can be evaluated 
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computationally by comparing values of e at adjacent points, but is convenient for 
the comparisons of the next Section, and also saves computing time. It is done in 
Appendix C, which gives 

{vm’(u-u), [rvm’(u-u)-u A m’(u-u)]}+CS, 
P 

where S is a 6-vector defined there, and v is the velocity gradient mapping (i.e. v 
gives the change in u over a small displacement S as vd). The complexity of the 
expressions for S do detract somewhat from the simplicity of ( 6 4 ,  and may be 
thought therefore to reduce the reliability of computer programs based on it - such 
programs can however be made self-checking by also evaluating e, and continuously 
comparing 6e with (Ae/AX).&X, making due allowance for 6U. 

A final computational point is that the expression (6.9) clearly does not apply at  
those discrete instants when the end of a cylinder is crossing the water surface, for 
then there is a step change in e of pq51(u-u).nc/cosa (see (5 .8) ) ,  which will give very 
large loads AeIAX on the right-hand side of (6.8), and be registered as an 
inconsistency by this self-checking routine. Simultaneously, however, there is a step 
change of &(n,r A n)c/cosa in I (see (5.13)), giving similar very large loads dI/dt 
on the right-hand side of (6.8). If we imagine these sudden changes in e and I to be 
occurring not instantaneously but linearly with penetration through a surface layer 
of arbitrarily small thickness 8 ,  it is easy to show that the two large loads are both 
equal to c lp$ , (o -u ) .n (n , r  A n)c/cosa, with the signs such that they cancel each 
other out, giving zero net impulse. This is of course also necessary for physical 
consistency, since the right-hand side of (6.8) would certainly have given no impulse 
had we chosen a point on the water surface where $I = 0. In any event, it is necessary 
computationally to invoke this absence of an impulse during surface transits of 
cylinder ends, and simply hold the structural velocity constant for the single 
timestep involved, temporarily suspending the calculation of the right-hand side of 
(6.8). 

7. Comparison with ‘ Morison’s equation ’ 
I t  has already been noted in $6 that in the fully immersed still-water case our 

whole equation of motion (6.8) can be identified as the classical Kirchhoff equations 
for an arbitrarily shaped body. We now compare (6.8) with the modern language of 
fluid loading on lattice-type offshore structures, in which fluid loads are described by 
the semi-empirical Morison’s equation that gives the local lateral force per unit 
length as (see e.g. Sarpkaya & Isaacson 1981, equation 5.43) 

where ( ), indicates the transverse component (considered as a scalar, e.g. u, is 
considered to be zero if uT is constant in magnitude but changing in direction as the 
cylinder moves), and cm and cd are empirically adjusted coefficients. This paper is 
concerned with the potential-flow load only : it  is easy to’ show that when the flow is 
uniform and two-dimensional (as in a U-tube apparatus), the potential-flow load is 
given exactly by the inertial (first) term in (7.1) (with cm = 2.0 for a circular 
cylinder). We shall therefore be concerned with the non-uniform and three- 
dimensional potential-flow effects on a real structure in waves, which have already 
been identified in $2 as (i) end effects around submerged ends and free-surface 
intersections, see table 1 columns 3-5. In either case the effects can be categorized as 
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either steady flow or unsteady flow ; (ii) longitudinal diffractedlradiated flow effects, 
see table 1 column 1 row 1 ; (iii) direct effects of incident velocity gradients, see table 
1 column 2. In all cases the fluid load is calculated correctly by (6.8) ; we shall now 
perform this calculation in appropriate simple cases, first to cross-check the results 
with earlier calculations by other methods where available, and secondly to establish 
the conditions under which these calculations are practically significant at present. 
By this we mean the conditions under which the three-dimensional potential-flow 
load is significant even in the context of the other current uncertainties, particularly 
over the vorticity-induced load, which is currently calculated in a relatively crude 
two-dimensional fashion using the drag (second) term in Morison’s equation (7 .1) .  
Since such a two-dimensional calculation of vorticity-induced load is in general an 
overestimate compared with the true three-dimensional effect (J. M. R. Graham 
1987, private communication), our criterion for significance will be that (for a 
circular cylinder) our load be comparable with the total load predicted by Morison’s 
equation, with c,  = 2 and cd = 1 (typical of current practice). 

7.1. Steady-Jow end effects 
The simplest case to consider is a fully immersed finite cylinder in steady translation 
in still water, as featured in $3:  the only non-zero fluid loading term on the right- 
hand side of (6.8) is the Munk moment m A v ,  which must be counteracted by an 
equal and opposite external couple Q, since the left-hand side is zero. We saw in 53 
that there is in fact no resultant fluid load along the length of the cylinder, so the 
Munk moment must be caused by end effects, which evidently must be giving a 
transverse force a t  each end of - (u . I )mu.  

The next simplest case is a partially immersed cylinder in steady translation 
through the surface of still water, with one end out and one in. This time the left- 
hand side of (6.8) is not zero but is equivalent to  a localized fluid force a t  the surface 
intersection of (u-n) mulcos a on the right-hand side of (6.8). The Ae/AX term of 
(6.8) is also non-zero and gives via (C 5 )  another fluid force of -i(u.mu)n/cosa at  
the same location. Finally there is a Munk moment rn A v as above, this time based 
on the instantaneous value of m ; since the transverse force at  the immersed end must 
still be (7.2) above, we can represent the Munk moment by adding a similar force a t  
the free surface. Taken together these free-surface forces have a longitudinal 
component which can only mean that there is a longitudinal force on the immersed 

(7.3) 
end, viz. $(u.mu) 1. 

It may a t  first sight appear strange that this longitudinal force is zero if the cylinder 
velocity is purely longitudinal (in contrast to the force on the upstream half of a 
translating sphere of the same cross-section c ,  which from Batchelor (1967, equation 
6.8.13) is &pcu.u, i.e. the same k‘b-order as (7.3)), but consider the cylinder entering 
still water with a steady and purely longitudinal velocity. The fluid kinetic energy is 
then constant, implying that the force must be zero. 

The free-surface forces also have a transverse component, which can be written 

(7.2) 

$tana{-[t.(I A mu)] ( I  A u)+(t .u)mu} (7.4) 
by writing t for a transverse unit vector pointing out of the water in the plane of I 
and n (see figure l),  and s = I A t for a transverse unit vector in the free surface, and 
noting that I A u = ( t -u)s-(s .u)  t .  The first term of (7.4) is exactly analogous to (7.2) 
and (7.3) in that it represents a three-dimensional potential-flow effect in principle 
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beyond current practice based on Morison’s equation (7.1); but the second term is in 
a special category because for a near 90” current practice would be to make special 
provision for it as a ‘slam load ’. These slam loads are conventionally calculated (see 
e.g. Sarpkaya & Isaacson 1981, $5.5.2) on the basis of ‘rate of change of momentum’ 
which gives (since for a cylinder moving transversely the rate of change of wetted 
length is tana(1.u)) the fluid force as t a n a ( t - u ) m u  which is exactly twice the second 
term of (7.4), and is completely spurious because that argument ignores the force on 
the far fluid boundary, which does not tend to zero with boundary distance (and if 
there is no far boundary then there is accordingly the famous classical conundrum 
that momentum is not defined, see Lamb 1932 $119)). Indeed, the work done against 
this slam load can be seen to be exactly twice the kinetic energy gain, whereas the 
work done against (7.4) (plus the work done against the submerged-end forces (7.2) 
and (7.3), which is non-zero if the cylinder velocity is not purely transverse) can be 
seen to be equal to the kinetic energy gain, as it should be. The force of this point is 
particularly evident in the case of a cylinder leaving the water surface rather than 
entering i t :  this time the spurious ‘rate of change of momentum’ argument leads to 
a force which does twice as much work as the kinetic energy loss! 

In  general, we saw in table 1 that  steady-flow end effects do not vanish in our thin- 
cylinder (small-k’b) limit because the smallness of the areas involved (one k‘b-order 
higher than the area of the cylinder sides) is offset by the bigness of the fluid 
velocities (one k‘b-order lower than on the cylinder sides, given that the lowest-k’b- 
order side effects cancel via D’Alembert’s paradox) ; it also follows that it is sufficient 
to use the lowest-k’b-order approximation to longitudinal and transverse fluid 
velocities when calculating steady-flow end effects. I n  particular, we can ignore the 
effects of longitudinal radiated/diffracted velocity (table 1, column 1 row 1 )  and 
incident velocity gradients (table 1, column 2), leading to the important conclusion 
that the formulae (7.2), (7.3) and (7.4) for steady-$ow end effects will be true in general 
if we replace u by the relative velocity (u-u) .  This is in fact a searching test of the 
consistency of our equation of motion (6.8) - it can be shown for example (Rainey 
1984) that  (6.8) gives exactly the same forces, as it should, whether the (arbitrarily 
shaped) structure is moving into still water, or the water is moving (uniformly) onto 
a fixed structure. In  the latter case i t  should of course be arranged that the surface 
pressure in the incident flow is strictly zero, or else the structure will feel an extra 
force pushing i t  through the wavy lid - this means, for example, that when a uniform 
current is considered i t  is necessary to  lower the water level to  compensate for the 
pressure drop from the last term in (2.6). 

We have also seen in general that steady-flow end forces are proportional to 
velocity squared and thus of second ka’-order, and proportional to  cylinder cross- 
section and thus of second kb-order (like all our thin-cylinder potential-flow forces, 
see 92). Morison’s equation (7.1), by contrast, has its inertial term of first k‘a’-order 
and second k‘b-order, and its drag term of second k’a’-order and first k‘b-order. The 
situation is summarized in table 2. Steady-flow end effects are thus comparable to the 
drag term rather than the inertia term in Morison’s equation (in that they are 
proportional to velocity squared and thus of second order in k‘a’), but are one order 
higher in k‘b, and can thus be thought of as a ‘higher k‘b-order refinement of drag’. 
The criterion for their significance will therefore be based on the size of k‘b - and since 
they occur whenever cylinders have finite lengths, i t  will depend most generally just 
on the cylinder length aspect of k’. It can be established by considering the simplest 
case above, of a fully immersed circular cylinder in uniform translation. Setting 
c, = 2 and cd = 1 as agreed above, Morison’s equation would predict a fluid load 

I 1  FLY 204 
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k'b-order 

k'b (k'b)' 
(i) Morison inertia term 

(ii) Unsteady-flow end effects 
(i) Steady-flow end effects 

(ii) Longitudinal diffracted/radiated 

(iii) Extensional incident flow effects 

(i) Morison drag term 

flow effects 
(k'a')' 

TABLE 2. k'd-order and k'b-order of various fluid loads 

k'a'-order 

on each half of the cylinder of pblu: where 21 is the length of the cylinder, as against 
our end effects of (u - l )  pcuT. Evidently the significance of the end effects depends on 
(u-l)/u,, i.e. the angle of the cylinder to the flow, which on an offshore structure 
typically varies during the wave cycle. It is reasonable to  say in these circumstances 
that our end effects are significant if they are the largest fluid load for, say, 20% of 
the time, which sets our criterion at cylinder lengthldiameter < 10. 

7.2. Unsteady-$ow end effects 
When we consider a fully immersed finite cylinder fixed in uniform but unsteady 
flow, we see from (6.8) that the potential-flow fluid loads are as for steady flow (i.e. 
the end effects (7.2) and (7.3), coming this time from the Ae/AX term in (6.8)) plus 
the load from the -dl/dt term in (6.8), which is (referring to (5.13)) in this case 
simply m'v per unit length. This additional load is exactly as would be predicted by 
the inertia term in Morison's equation, except that it includes a longitudinal force 
(from the p c  part of m') which is easily traceable to the incident-flow pressure 
difference across the cylinder ends. It is the now-familiar situation of the high k'b- 
order of the end area being counteracted by the low k'b-order of the pressures there, 
to give a result of comparable k'b-order to any other potential flow load. This time, 
however, the unsteady-flow end effects are exactly comparable with the inertia term 
in Morison's equation (being in fact of one half its maximum size if c, is taken as 2 
as agreed above), as shown in table 2, and will thus be significant whenever that term 
is important compared with the drag term. The criterion for this is well known to be 
that the amplitude of the water motion (typically the diameter of particle orbits in 
wave motion) is less than 5 x cylinder diameter, irrespective of the value of k'. 

In the general case of a cylinder in waves intersecting the water surface, clearly 
only the immersed end will be affected, and indeed we see from (5.13) that the fluid 
load on a fixed cylinder is no longer simply m'v per unit length, but for example loses 
its longitudinal component, as it should do, if the immersed end is deep below the 
wave action (since $I is the integral of u along L). 

7.3. Longitudinal diffractedlradiated flow effects 
We noted in $2 that  Lighthill (1979) found it necessary to include the effect of the 
longitudinal diffracted flow in his small-k'b calculation of the wave loads on a vertical 
cylinder in waves. An example where this is the only (distributed) potential-flow load 
is a fully immersed weightless circular cylinder moving steadly in a circle in still 
water, always remaining symmetrically tangential to the circle, as illustrated in 
figure 2. Writing u for the longitudinal component of the cylinder's velocity, 21 for 
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b 
FIGURE 2. Fluid forces on a cylinder moving in a circle. 

its length, and I' for the radius of the circle, we can write down the end forces on the 
cylinder as !p(ul/l')2 and pcu21/1', as shown, using (7.2) and (7.3). Our equation (6.8) 
gives the total fluid load as zero (taking R as the centre of the cylinder, so that m is 
continuously zero and h is a constant), however, so we deduce that there must be a 
centripetal fluid load 2pcu21/l' disributed along the cylinder, as shown. This is the 
'negative centrifugal force ' of airship aerodynamics, where it was first explained 
(Munk 1936, figure 3) by a heuristic momentum argument, an argument which was 
later generalized and proved by direct pressure integration by Lighthill (1960). It is 
traceable to the effect of the longitudinal radiated flow : the radiated potential (see 
(2.4)) will appear constant to an observer rotating with the cylinder, so that the first 
pressure term in (2.6) is pu.Vq5, whose effect cancels out by symmetry around the 
cylinder except for the contribution from the longitudinal flow, which is pcu2/I' per 
unit length. The effect of the second pressure term in (2.6) also cancels out by 
symmetry. I n  general we can see that these longitudinal-flow loads, like steady-flow 
end loads, will be of second order in both k'a' and lc'b, see table 2. 

Morison's equation (7.1) will produce zero fluid load from the inertial term (unless 
u is understood as a vector, which would lead to  the ridiculous conclusion that a torus 
rotating about its axis in still water would feel a centrifugal fluid load, since u would 
be centripetal), and a pure couple from the drag term. Taking cd = 1 as agreed above, 
the local load from the drag term will be pb(ux/Z')2 a t  a distance z from the centre 
of the cylinder, which is greater than our potential-flow distributed load provided 
( x / I ' ) ~  > n(b/I'). This is exactly as a t  the end of $7.1 above: when the incident angle 
of the cylinder to the flow is small the potential-flow dominates, when it is large the 
vorticity-flow load dominates. Taking the same angle of incidence as there as the 
threshold for practical significance, we conclude that these potential-flow loads 
become significant if the motion radius (to the instantaneous centre of rotation) is 
less than 20 times the cylinder diameter. 

7.4. Direct effects of incident velocity gradients 
The only case where the second-Pa'-order potential flow load is traceable only to  the 
direct effect of v (i.e. the second term in (2.4)) is the two-dimensional problem of a 
fully immersed cylinder fixed parallel to the crests of the waves. This problem is also 
unique in that it can be readily studied using the result in Taylor (1928b) noted 
extensively above, because such a cylinder satisfies Taylor's requirement that all its 

11-2 
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relevant dimensions are small compared with a wavelength. As apparently first 
pointed out by Isaacson (1979), Taylor’s steady- flow calculation corresponds to the 
part of the general unsteady-flow loading coming from the second pressure term in 
(2.6), and moreover the surface integral of the first pressure term has simple small- 
k‘b limiting properties, so we can obtain the total potential-flow load on our cylinder 
as (Isaacson 1979, equation 1 7 ;  since v is symmetric we can write Isaacson’s 
components of vT as v )  

per unit length, which agrees, as i t  should, with our equation (6.8). (Incidentally, 
Taylor’s general result for a small body would be in our notation vm‘v with m‘ 
representing the three-dimensional added mass and volume, see also Lighthill 19866, 
equation 24, so for the general small-body case Isaacson should have obtained (7.5) 
with this meaning for m’,  which would also be given by (6.8). However, Isaacson’s 
general small-body result (Isaacson 1979, equation 15 and Sarpkaya & Isaacson 
1981, equation 5.5) is incorrect, containing an erroneous factor of a half in the off- 
diagonal parts of v ,  traceable to Isaacson 1979, equation 6.) 

The inertia term in Morison’s equation only gives the first term in (7.5) (although 
when the cylinder is circular, we could obtain the correct answer by substituting the 
particle acceleration u +  vu for u, as pointed out by Isaacson (1979, equation 28)),  
which is correct to first k’a’-order. The second term in (7.5), coming from the incident 
velocity gradient, is of second Fa‘-order, see table 2, and is thus of size exactly 
comparable with the drag term in Morison’s equation (although of course generally 
acting in a different direction), with cd = 7ck6 (since v - kv). Taking once more a 
circular cylinder and a drag term with cd = 1 to  find the criterion for pract,ical 
significance, and taking the vertical forces for comparison (since vv is typically 
vertical in this case, see below) we see that again the relative size of the two forces 
depends on the timing, with our 20 O/o rule giving the criterion for the significance of 
direct effects of incident velocity gradients as wave lengthlcylinder diameter < 30. 

In all other cases the direct effects of incident velocity gradients are combined with 
a longitudinal-flow effect like $7.3 above, so that Taylor’s result no longer gives the 
potential-flow load per unit length on the cylinder, although Lighthill (19866, $ 1 1 )  
inexplicably implies that it does. The best illustration of this point is in fact the fixed 
vertical circular cylinder example in Lighthill (1979), which correctly includes the 
effects of longitudinal diffracted flow and gives the second-k’a’-order potential flow 
load as (Lighthill 1979, equation 43) the horizontal component of 

- vmv (7.6) 

m’v+ vm’v (7.5) 

per unit length, or, given that vv is vertical and v is purely first k’a’-order in 
Lighthill’s example, minus Taylor’s result (7.5). This agrees, as it should, with our 
general result (6.8), as may be seen most readily by considering a finite length of the 
cylinder and noting that the sum of the transverse forces (7.2) a t  the cylinder ends 
can be written 

Z-V{(Z.v) mu} = - {(Z. vZ) mu+ ( Z s v )  mvC) = - m{Z. vZ(t’. v )  + t ’ .  vZ(Z. v ) }  t’ 

(7.7) 
- s, s, s, 

JLrnv{(t / -v) t ’ - ( l .v)O = mv{2(t’ .v)t ‘> = 2 

where t’ is a unit vector perpendicular to the cylinder axis and wave crests. By 
Laplace’s equation we can write Z. vZ+  t ’ .  vt’ = 0 so this becomes 

(7.8) 
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using the fact that vu is vertical in the given waves (so that mvv = 0) ,  and finally the 
fact that  in our case m is a scalar times (1’) t’.  . Adding (7.6) and (7.8) gives a total 
equivalent horizontal force per unit length equal to the horizontal component of vmv, 
which agrees with the prediction of (6.8) given again that vo is vertical. Lighthill’s 
choice of second k‘a’-order, deep water, and an infinite vertical cylinder in fact neatly 
avoids end effects as noted in $2, so we can alternatively show that if the free surface 
and infinite length is taken into account, the prediction of (6.8) reduces to (7.6) 
integrated along the whole cylinder, as i t  should. The algebra is longer though - the 
integral of the horizontal component (in the direction of wave travel) of (7.6) 
becomes to second k’a’-order 

1 pck2 
2 0  $1 (7.9) 

where w is the wave angular frequency and $,,d, are evaluated a t  the surface 
intersection. The A e / A X  term in (6.8) then gives minus (7.9) from its line integral 
part and minus four times (7.9) from its surface intersection part, the -dl/dt term 
in (6.8) gives four times (7.9) from its surface intersection part and four times (7.9) 
from L in d/dt (5.13), and finally the hydrostatic part of Q in (6.8) (i.e. (6.3)) gives 
minus two times (7.9),  making in all (7.9) as required. Lighthill’s additional 
‘waterline force’ (Lighthill 1979, equation 34, and 1986b, equation 33) can be left out 
of the reckoning because it is equivalent to the effect from the varying length of L 
in the JLm’k term in d/dt (5.13), and would also incidentally be included by the 
standard practice of applying Morison’s equation up to  the instantaneous level of the 
incident wave. 

8. Conclusions 

waves is given, to second order in wave height, by 
The potential-flow fluid loading on partially immersed lattice structure moving in 

dN d I  Ae 
dt dt A X ’  
- = Q--+{O, ( m + j )  A V}+- 

where N = (m, h) is the translational and angular momentum ’ of the structure 
based on its instantaneous added mass calculated in two-dimensional style as in 
Morison’s equation. Q is the external force and moment on the structure from non- 
hydrodynamic sources, and the fluid loading terms are given by 

{ vm’( v - u ) ,  [rvm’(v- u)  - u A m’(u - u ) ] }  + X S. Ae 
P 

Since these are all line integrals along the lattice-member centrelines, plus simple 
summations over their intersections with the free surface, (8.1) can be solved 
computationally by a Morison-equation-type computer program. 

The effects of vorticity can be included to  the same order of accuracy by vortex 
momentum calculations (Lighthill 19866), or approximately included by the drag 
term in Morison’s equation. In  the latter case the combined formulation is a 
worthwhile improvement on Morison’s equation when any one of the conditions : (i) 
lattice member length/diameter < 10 ; or (ii) relative fluid motion/lattice member 
diameter < 5 ;  or (iii) radius of structural motion/lattice member diameter < 20; or 
(iv) wavelength/lattice member diameter < 30 ; is satisfied. 
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elimination to an Appendix, and a lengthier exposition of Lighthill (1979). 
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work onto a full-time basis - the author particularly acknowledges the suggestion 
from Dr S. L. Smith to include an explicit calculation of Ae/AX. In  contrast to the 
classical emphasis of much of the paper, Dr Smith had shown the relevance and 
power of computational methods by computer-debugging Appendix C, comparing 
AelAX with SeISX as described a t  the end of $6. Finally the author is grateful to Dr 
A. M. Mackey, Dr R. G. Standing, and one of the referees for drawing his attention 
to (respectively) the work of Munk (1936), Mavrakos (1988), and Havelock (1940), 
cited above. 

Appendix A. Notation scheme 
To keep the algebra manageable in this paper, it is necessary to  adopt a special 

notation, in which single symbols denote scalars, 3- or 6-dimensional vectors, 3- or 
6-dimensional linear mappings, or spatial features, depending on the typeface used. 
Standard practice is followed systematically for scalars, 3-dimensional vectors and 
spatial features: thus, for example, v is a scalar giving a velocity component in a 
particular axis system (see (2.3)), u is the vector describing the fluid velocity in the 
incident wave (see (5.3)), and V denotes the total volumetric extent of the water (see 
figure 1). Additional typefaces are then used systematically for 6-dimensional 
vectors, and 3- and 6-dimensional linear mappings. To aid readability, the symbols 
in these latter categories are listed below, in the order’in which they appear, with the 
point of first occurrence given for each. 

6-dimensional vectors 
U structural velocity and angular velocity i.e. U = (v,o) (5.11) 
I ‘wave impulse’ (5.11), = ( i ,k )  (6.2) 
N structural ‘impulse’ = M * U  = (m, h)  (6.2) 
Q non-hydrodynamic force (acting a t  R)  and moment (6.2) 
X incremental position, i.e. 6X = U6t (A 2.2) 
pi generalized velocity vectors, i.e. U = eqi (B 3) 
S see (C 6) 

m 

m’ M+pc (5.12) 
r r A considered as a 3-dimensional mapping (5.13) 
v velocity gradient mapping (6.9) 

3-dimensional linear mappings 
2-dimensions1 added mass (per unit length) considered as a 3-dimensional 
mapping (5.9) 
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6-dimensional mappings 
M 6-dimensional added mass (5.15) 
M* 6-dimensional mass (6.1) 

Appendix B. Elimination of generalized coordinates 
The generalized Lagrange coordinates qi of (6.1) give an incremental change of any 

variable f as 
Sf = - + - S q i + y S q i .  af af af 

at %i aqi 
We wish instead to use the general vector notation in which an incremental position 
change is written SX = U6t and correspondingly an incremental variable change is 
written 

If we define unit generalized velocity 6-vectors by 

u=p,q, (B 3) 
then we can describe the non-hydrodynamic force (acting a t  R )  and moment as a 6- 
vector Q and its rate of working as Q. U, which means that by definition 

figi = Q. U = Q-piqi, (B 4) 
so that on the right-hand side of (6.1) fi = Q.C. Also, from (B 3) P, 6qt = U6t = SX 
so for any variable which is independent of U we see from (B 1) and (B 2) that 

(B 5 )  
a a - = pi.- ax' 

Thus the second term on the left-hand side of (6.1) can be differentiated term-by- 
term and written (remembering that M* is symmetric) as 

Because a/aX treats U as a constant this can be written 

(B 7) 
a -E(i+ M* V) - pi-- (eF + I .  U+  $u- M* u). 

The first term on the left-hand side of (6.1) can likewise be differentiated term-by- 
term and written, by virtue of (B 3): 

aqi ax 

d 
dt { aq, } d"t dt 

All the terms of (6.1) apart from the first terms in (B 7) and (B 8) viz: 

d E ( Z + M * U )  =-{P,(I+M*Uj} = &I+M*U)+P,.-(I+M*U). (B 8) 

have now been expressed as a scalar product with P,, which would mean, since 4 
form a linearly independent set, that P, could be eliminated to leave the required 
vector equation. 



322 R. C. T. Rainey 

It is possible to express (B 9) as a scalar product with 4 by considering qi to be the 
Cartesian coordinates of R for i = 1 , 2 , 3  and successive rotations about three 
arbitrary fixed axes for i = 4,5,6.  The latter alone define the structure’s angular 
velocity, so we can write 

where j = 1.2,3 corresponds to i = 4,5,6.  Writing M*U = N = (m, h)  and I = (j, k ) ,  
we can thus write (B 9) as 

O = q.qi = (0, Pj) Qj? (B 10) 

Now since q j , j  = 1 , 2 , 3  are structural rotations in order about fixed axes, they will 
‘carry earlier p j  with them ’ so that 

Thus 

So (B 11)  becomes 

(0 A p j ) * ( k + h )  = p j - { ( k + h )  A 0} = P , - { O ,  ( k + h )  A 0 } ,  (B 14) 
which is the required scalar product witjh 4. The vector equation of motion of the 
structure is therefore 

d a 
- ( I+N)+{O,(k+h)  dt A o} = - ( e , + I - U + # J - M * U ) + Q .  ax (B 15) 

Appendix C. The thin-cylinder expression for Ae/AX 
Vsing (5.6)-(5.9) we can first write e as 

e = e,+~sL(u-u).m/(v-u)-- P c u ’ u - P ~ ~ , ( v - u ) . n c / c o s a .  (C 1 )  

A e l A X  can most easily be evaluated by taking the viewpoint of an observer moving 
with the structure, to whom U and m‘ will appear fixed during the position 
increment 6X = (ax,, ax,) used to define A / A X  in (6.4)-(6.6), but u will, a t  any point 
on the structure, appear to change by 

: s, P 

60 = V(6x, + 6x2 A r )  i- v A &x,. (C 2) 
If the structure is fully immersed, only the second term in (C 1) will appear to change, 
by an amount given (remembering that m‘ is symmetric) by 

/L{V(6Xl+dX, A r )+V A 6x2}*m’(0-U) .  

S, Ivm/(v- u ) ,  {rvml(v- u )  - v A m’(v- ~ ) } I . s x .  

(C 3) 

Writing r for  r A ,  as in 45, and noting that (Vr )T  = - r ~  because r is skew-symmetric 
and v is symmetric, this can bc rcarrangcd as 

(C 4) 
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If the structure is not fully immersed, there will in addition be changes to the 
integrals in (C 1) resulting from changes in the cylinders’ wetted lengths. Now a 
cylinder motion parallel to  the water surface does not change its wetted length, and 
a unit motion normal to the water surface gives a wetted length reduction of 
(cosa)-l. The overall wetted length reduction is therefore the scalar product of 
nlcosa with cylinder motion, cnabling the increment in (C 1) to be written 

i[( u - u)  . m’( u - u )  -pcu. u] n - (6X, + b’x2 A r )  
cos a -2 

P 

Finally, we must for a partially immersed structure consider the last term in 
(C i ) ,  which is only zero if the water is still. (The first term e, in (C 1) can of course 
always be ignored, because it is in all respects independent of the structure, and thus 
never makes any contribution to  AelAX.) The variation with our position increment 
of each constituent of this last term produces in each case an expression of 
comparable complexity to  (C 5) ; these are however not reproduced heret because 
they are not required for any of the formulae in $ 7  above. Instead, we simply write 
the complete expression for AelAX as 

JL [ V m ’ (  0 - U) , {rVm’( U - U) - U A m’( U - U))] 4- c s (C 6) 
P 

where the 6-dimensional vector S is the sum of the 6-dimensional vectors (in scalar 
product with S X )  in these expressions and (C 5). 
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